参考:http://www.ruanyifeng.com/blog/2012/05/internet_protocol_suite_part_i.html

五层模型

实体层

电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。

这就叫做”实体层”,它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

链接层

定义

单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?这就是”链接层”的功能,它在”实体层”的上方,确定了0和1的分组方式。

以太网协议

早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做”以太网”(Ethernet)的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做”帧”(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。


“标头”包含数据包的一些说明项,比如发送者、接受者、数据类型等等;”数据”则是数据包的具体内容。

“标头”的长度,固定为18字节。”数据”的长度,最短为46字节,最长为1500字节。因此,整个”帧”最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

MAC地址

上面提到,以太网数据包的”标头”,包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?

以太网规定,连入网络的所有设备,都必须具有”网卡”接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。

每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

广播

一块网卡怎么会知道另一块网卡的MAC地址?有一种ARP协议,可以解决这个问题。

有了MAC地址,系统怎样才能把数据包准确送到接收方?

以太网采用了一种很”原始”的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。


上图中,1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的”标头”,找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做”广播”(broadcasting)。

网络层

网络层的由来

以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。

但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一”包”,不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。


因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用”路由”方式发送。(”路由”的意思,就是指如何向不同的子网络分发数据包。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。

这就导致了”网络层”的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做”网络地址”,简称”网址”。

于是,”网络层”出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。

网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

IP协议

网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。

目前,广泛采用的是IP协议第四版,简称IPv4。这个版本规定,网络地址由32个二进制位组成。


习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。

互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。

但是,问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。

那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数”子网掩码“(subnet mask)。

所谓”子网掩码”,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。

知道”子网掩码”,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

IP数据包

根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。

我们可以把IP数据包直接放进以太网数据包的”数据”部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。

具体来说,IP数据包也分为”标头”和”数据”两个部分。


“标头”部分主要包括版本、长度、IP地址等信息,”数据”部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样。

IP数据包的”标头”部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的”数据”部分,最长为65,515字节。前面说过,以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

ARP协议

因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的,但是我们不知道它的MAC地址。

我们需要一种机制,能够从IP地址得到MAC地址。

这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的”网关”(gateway),让网关去处理。

第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个”广播”地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

传输层

传输层的由来

有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。

接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做”端口”(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

“端口”是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

“传输层”的功能,就是建立”端口到端口”的通信。相比之下,”网络层”的功能是建立”主机到主机”的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做”套接字”(socket)。有了它,就可以进行网络应用程序开发了。

UDP协议

现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

UDP数据包,也是由”标头”和”数据”两部分组成。


“标头”部分主要定义了发出端口和接收端口,”数据”部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的”数据”部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:

UDP数据包非常简单,”标头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

TCP协议

UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。

为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

TCP数据包和UDP数据包一样,都是内嵌在IP数据包的”数据”部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

应用层

应用程序收到”传输层”的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。

“应用层”的作用,就是规定应用程序的数据格式。

举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了”应用层”。

这是最高的一层,直接面对用户。它的数据就放在TCP数据包的”数据”部分。因此,现在的以太网的数据包就变成下面这样。

网关转发

上图中,1号电脑要向4号电脑发送一个数据包。它先判断4号电脑是否在同一个子网络,结果发现不是,于是就把这个数据包发到网关A。网关A通过路由协议,发现4号电脑位于子网络B,又把数据包发给网关B,网关B再转发到4号电脑。

1号电脑把数据包发到网关A,必须知道网关A的MAC地址。所以,数据包的目标地址,实际上分成两种情况:


发送数据包之前,电脑必须判断对方是否在同一个子网络,然后选择相应的MAC地址。

用户的上网设置

静态IP地址

一个电脑想要上网需要填入以下的内容:


由于它们是给定的,计算机每次开机,都会分到同样的IP地址,所以这种情况被称作”静态IP地址上网”。

这样的设置很专业,普通用户望而生畏,而且如果一台电脑的IP地址保持不变,其他电脑就不能使用这个地址,不够灵活。出于这两个原因,大多数用户使用”动态IP地址上网”。

动态IP地址

所谓”动态IP地址”,指计算机开机后,会自动分配到一个IP地址,不用人为设定。它使用的协议叫做DHCP协议

这个协议规定,每一个子网络中,有一台计算机负责管理本网络的所有IP地址,它叫做”DHCP服务器”。新的计算机加入网络,必须向”DHCP服务器”发送一个”DHCP请求”数据包,申请IP地址和相关的网络参数。

如果两台计算机在同一个子网络,必须知道对方的MAC地址和IP地址,才能发送数据包。但是,新加入的计算机不知道这两个地址,怎么发送数据包呢?

DHCP协议做了一些巧妙的规定。

DHCP协议

首先,它是一种应用层协议,建立在UDP协议之上,所以整个数据包是这样的:


(1)最前面的”以太网标头”,设置发出方(本机)的MAC地址和接收方(DHCP服务器)的MAC地址。前者就是本机网卡的MAC地址,后者这时不知道,就填入一个广播地址:FF-FF-FF-FF-FF-FF。
(2)后面的”IP标头”,设置发出方的IP地址和接收方的IP地址。这时,对于这两者,本机都不知道。于是,发出方的IP地址就设为0.0.0.0,接收方的IP地址设为255.255.255.255。
(3)最后的”UDP标头”,设置发出方的端口和接收方的端口。这一部分是DHCP协议规定好的,发出方是68端口,接收方是67端口。

这个数据包构造完成后,就可以发出了。以太网是广播发送,同一个子网络的每台计算机都收到了这个包。因为接收方的MAC地址是FF-FF-FF-FF-FF-FF,看不出是发给谁的,所以每台收到这个包的计算机,还必须分析这个包的IP地址,才能确定是不是发给自己的。当看到发出方IP地址是0.0.0.0,接收方是255.255.255.255,于是DHCP服务器知道”这个包是发给我的”,而其他计算机就可以丢弃这个包。

接下来,DHCP服务器读出这个包的数据内容,分配好IP地址,发送回去一个”DHCP响应”数据包。这个响应包的结构也是类似的,以太网标头的MAC地址是双方的网卡地址,IP标头的IP地址是DHCP服务器的IP地址(发出方)和255.255.255.255(接收方),UDP标头的端口是67(发出方)和68(接收方),分配给请求端的IP地址和本网络的具体参数则包含在Data部分。

新加入的计算机收到这个响应包,于是就知道了自己的IP地址、子网掩码、网关地址、DNS服务器等等参数。

访问网页

本机参数

假定用户设置好了网络参数:


想要访问Google,在地址栏输入了网址:www.google.com。
这意味着,浏览器要向Google发送一个网页请求的数据包。

DNS协议

我们知道,发送数据包,必须要知道对方的IP地址。但是,现在,我们只知道网址www.google.com,不知道它的IP地址。

DNS协议可以帮助我们,将这个网址转换成IP地址。已知DNS服务器为8.8.8.8,于是我们向这个地址发送一个DNS数据包(53端口)。


然后,DNS服务器做出响应,告诉我们Google的IP地址是172.194.72.105。于是,我们知道了对方的IP地址。

子网掩码

要判断,这个IP地址是不是在同一个子网络,这就要用到子网掩码。

已知子网掩码是255.255.255.0,本机用它对自己的IP地址192.168.1.100,做一个二进制的AND运算(两个数位都为1,结果为1,否则为0),计算结果为192.168.1.0;然后对Google的IP地址172.194.72.105也做一个AND运算,计算结果为172.194.72.0。这两个结果不相等,所以结论是,Google与本机不在同一个子网络。

因此,我们要向Google发送数据包,必须通过网关192.168.1.1转发,也就是说,接收方的MAC地址将是网关的MAC地址。

应用层协议

浏览网页用的是HTTP协议,它的整个数据包构造是这样的:


HTTP部分的内容,类似于下面这样:

我们假定这个部分的长度为4960字节,它会被嵌在TCP数据包之中。

TCP协议

TCP数据包需要设置端口,接收方(Google)的HTTP端口默认是80,发送方(本机)的端口是一个随机生成的1024-65535之间的整数,假定为51775。

TCP数据包的标头长度为20字节,加上嵌入HTTP的数据包,总长度变为4980字节。

IP协议

然后,TCP数据包再嵌入IP数据包。IP数据包需要设置双方的IP地址,这是已知的,发送方是192.168.1.100(本机),接收方是172.194.72.105(Google)。

IP数据包的标头长度为20字节,加上嵌入的TCP数据包,总长度变为5000字节。

以太网协议

最后,IP数据包嵌入以太网数据包。以太网数据包需要设置双方的MAC地址,发送方为本机的网卡MAC地址,接收方为网关192.168.1.1的MAC地址(通过ARP协议得到)。

以太网数据包的数据部分,最大长度为1500字节,而现在的IP数据包长度为5000字节。因此,IP数据包必须分割成四个包。因为每个包都有自己的IP标头(20字节),所以四个包的IP数据包的长度分别为1500、1500、1500、560。

服务器端响应

经过多个网关的转发,Google的服务器172.194.72.105,收到了这四个以太网数据包。

根据IP标头的序号,Google将四个包拼起来,取出完整的TCP数据包,然后读出里面的”HTTP请求”,接着做出”HTTP响应”,再用TCP协议发回来。

本机收到HTTP响应以后,就可以将网页显示出来,完成一次网络通信。